

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2 Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-08/0201 of 20/11/2023

English translation prepared by CSTB - Original version in French language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Centre Scientifique et Technique du Batiment (CSTB)

Trade name: SPIT EPOBAR / EPOBAR*

Product family: Post installed rebar connections diameter 8 to 32 mm made with

SPIT EPOBAR / EPOBAR + injection mortar

Manufacturer: Société SPIT

Route de Lyon

BP 104

F-26501 BOURG- LES -VALENCE

France

Manufacturing plants: Société SPIT

Route de Lyon

F-26501 BOURG-LES-VALENCE

France

This European Technical

Assessment contains:

21 pages including 18 annexes which form an integral part of this

assessment

This European Technical

Assessment is issued in accordance with Regulation

accordance with Regulation (EU) No 305/2011, on the basis of:

This Assessment replaces:

EAD 330087-01-0601, Edition 12/2021

ETA-08/0201 issued on 23/02/2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

The SPIT EPOBAR / EPOBAR⁺ is used for the connection, by anchoring or overlap joint, of reinforcing bars (rebars) in existing structures made of ordinary non-carbonated concrete C12/15 to C50/60. The design of the post-installed rebar connections is done in accordance with EN 1992-1-1 and EN 1992-1-2 under static loading

The European Technical Assessment covers rebar anchoring systems consisting of SPIT EPOBAR or EPOBAR⁺ bonding material and an embedded straight deformed reinforcing bar in the range of $\phi 8$ to $\phi 32$ with properties according to Annex C of EN 1992-1-1:2004 and EN 10080:2005..The classes B and C of the rebar are recommended.

The illustration and the description of the product are given in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years for EPOBAR adhesive and 100 years for EPOBAR⁺ adhesive. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C1 to C6
Characteristic resistance under seismic loading	No performance determined (NPD)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

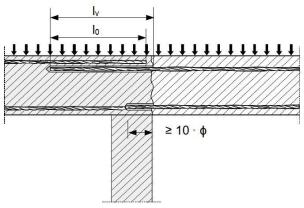
4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System	l
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1	

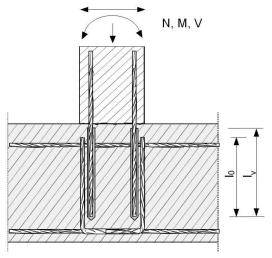
5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

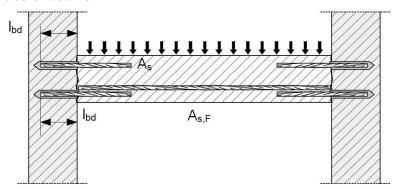

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

The original French version is signed by

Installed condition


Figure A1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams

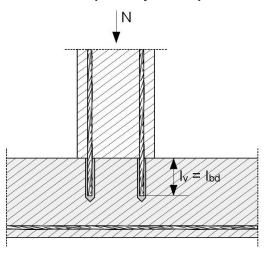

Figure A2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed in tension

Figure A3:

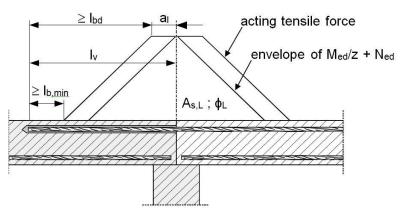
End anchoring of slabs or beams

SPIT EPOBAR / EPOBAR⁺ for rebar connection


Product description

Installed condition: application examples of post-installed rebars

Annex A1


Figure A4:

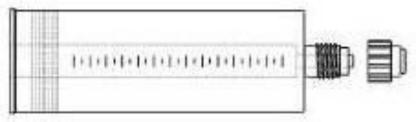
Rebar connection for components stressed primarily in compression

Figure A5:

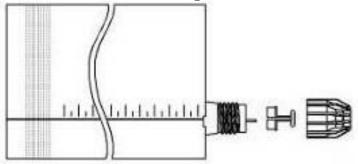
Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Note to Figure A1 to Figure A5:

- In the Figures no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2004+AC:2010 shall be present.
- The shear transfer between existing and new concrete shall be designed according to EN 1992-1-1:2004+AC:2010.
- Preparing of joints according to Annex B2.


The reference to EN 1992-1-1:2004+AC:2010 is cited in the following as EN 1992-1-1 only.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Product description Installed condition: application examples of post-installed rebars	Annex A2


EPOBAR / EPOBAR + cartridge 410ml:

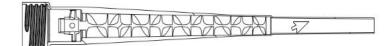
EPOBAR / EPOBAR + cartridge 825ml :

Marking of the mortar cartridges:

- Marking
- Trade name
- Charge code number

- Storage life
- · Curing and processing time

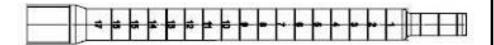
SPIT EPOBAR / EPOBAR⁺ for rebar connection


Product description

EPOBAR /EPOBAR+ Cartridges

Annex A3

Mixing nozzles


 Mixing nozzle for cartridges 345ml - 410ml

 High flow mixing nozzle for cartridges 825ml

 Reduction for mixing nozzle

Injection accessories for deep hole

Plastic extension must be use for drilled holes deeper than $h_0 > 250 \text{ mm}$ Piston plug for hole deeper must be use for drilled holes deeper than $h_0 > 350 \text{ mm}$

Cartridge volume	Mixing Nozzle	Extension for piston plug	Piston plug
All cartridges	Mixing nozzle for cartridges 345ml - 410ml	Ø13x1000	
Cartridge 825 ml	High flow	Ø20x1000	

Note: The piston plug can be used for all the hole diameters by cutting it to the relevant diameter.

Dispensers

Electric dispensers:
 Pneumatic dispensers:
 Manual dispensers:
 EGI 380 / EGI 825
 P380 / P825
 M345 / M380

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Product description	Annex A4
Installation tools	

Figure A6:

Reinforcing bar (rebar): ϕ 8 to ϕ 32 according to EN 1992-1-1

- Minimum value of related rib area f_R according to EN 1992-1-1.
- Rib height of the bar h_{rib} shall be in the range:

 $0.05 \cdot \varphi \le h_{rib} \le 0.07 \cdot \varphi$

• The maximum outer rebar diameter over the ribs shall be:

$$\phi + 2 \cdot 0.07 \cdot \phi = 1.14 \cdot \phi$$

(φ: nominal diameter of the bar; h_{rib}: rib height of the bar)

Properties of rebars (EN 1992-1-1)

Product form		rebars and de-coiled rods		
Class		В	С	
Characteristic yield stre	ngth f _{yk} or f _{0,2k} (MPa)	400 to 600		
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08 ≥ 1,15 < 1,35		
Characteristic strain at maximum force, ε _{uk} (%)		≥ 5,0	≥ 7,5	
Bendability	Bendability		Bend / Rebend test	
Maximum deviation from nominal mass (individual bar or wire) (%)	Nominal bar size (mm) ≤ 8 > 8	± 6,0 ± 4,5		
Bond: Minimum relative rib area, f _{R,min}	Nominal bar size (mm) 8 to 12 > 12	I	040 056	

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Product description	Annex A5
Rebars	

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016 for static and quasi static loading.
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design of rebar under static or quasi static loading in accordance with EN 1992-1-1.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

<u>Drilling technique:</u>

- Hammer drilling technique, compressed air drilling: all sizes

- Hammer drilling with hollow drill bit XTD: sizes φ12 to φ25

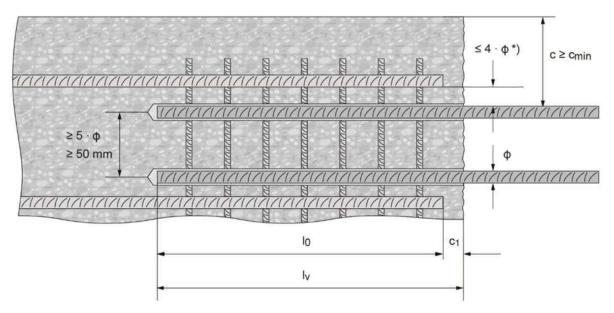
- Diamond coring, EPOBAR: sizes φ8 to φ32.

- Diamond coring, EPOBAR⁺: sizes φ12 to φ 32.

Use category:

Dry concrete for:

- Hammer drilling technique, compressed air drilling
- Hammer drilling with hollow drillt bit XTD
- Diamond coring


Wet concrete (not in flooded holes) for:

- Hammer drilling technique, compressed air drilling
- Diamond coring
- · Overhead installation is admissible.
- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Intended use Specifications	Annex B1

Figure B1:General construction rules for post-installed rebars

- Post-installed rebar may be designed for tension forces only.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1.
- The joints for concreting must be roughened to at least such an extent that aggregate protrudes.

- *) If the clear distance between lapped bars exceeds 4·φ, then the lap length shall be increased by the difference between the clear bar distance and 4·φ.
- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar

c_{min} minimum concrete cover according to Table B3 and to EN 1992-1-1

- diameter of reinforcement bar
- lo lap length, according to EN 1992-1-1 for static loading
- I_v embedment length $\ge I_0 + c_1$
- do nominal drill bit diameter

SPIT EPOBAR	/ EPOBAR [*]	for rebar	connection

General construction rules for post-installed rebars

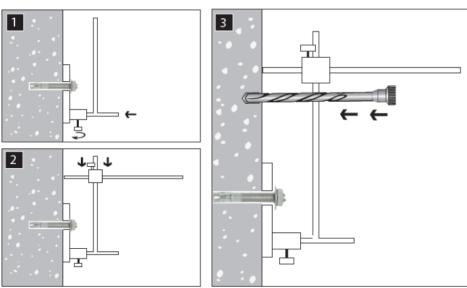

Annex B2

Table B1: Minimum concrete cover $c_{min}^{1)}$ of post-installed rebar under static loading

Drilling method	Bar diameter φ	Without drilling aid	With drilling aid
Hommor drilling	< 25 mm	30 + 0,06 lv ≥ 2¢	$30 + 0.02 \text{ lv} \ge 2\phi$
Hammer drilling	≥ 25 mm	40 + 0,06 lv ≥ 2¢	40 + 0,02 lv ≥ 2¢
Hammer drilling	< 25 mm	$30 + 0.06 \text{ lv} \ge 2\phi$	$30 + 0.02 \text{ lv} \ge 2\phi$
with hollow drill bit XTD	≥ 25 mm	40 + 0,06 lv ≥ 2¢	$40 + 0.02 \text{ lv} \ge 2\phi$
Compressed air drilling	< 25 mm	$50 + 0.08 \text{ lv} \ge 2\phi$	$50 + 0.02 \text{ lv} \ge 2\phi$
	≥ 25 mm	60 + 0,08 lv ≥ 2¢	60 + 0,02 lv ≥ 2¢
Diamond core drilling	< 25 mm	Drill stand is used	$30 + 0.02 \text{ lv} \ge 2\phi$
	≥ 25 mm	as drilling aid	40 + 0,02 lv ≥ 2¢

¹⁾ The minimum concrete cover as specified in EN 1992-1-1 must be observed.

Figure B2: Example of drilling aid system

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Intended used Minimum concrete cover	Annex B3

Table B3 : Drilling	diameter and	maximum	anchorage	length

	Nominal drilling diameter d ₀			Max Perr	missible anchorage	depth I _v
Rebar diameter d _{nom}	Drill bit	Hollow drill bit XTD ⁽³⁾	Diamond core ⁽⁴⁾	EPOBAR Dispensers: M345 / M380, P380, EGI 380	EPOBAR Dispensers : P825	EPOBAR+ Dispensers M380, P380, EGI 380
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ф8	10	-	10			
φ10	12	-	12			
φ12	15	16	16		4500 (2)	
φ14	18	18	18		1500 ⁽²⁾	
φ16	20	20	20	900 (1)		600 ⁽¹⁾
φ20	25	25	25			
φ25	30	30	30			
φ28	35	-	35		1200 (2)	
φ32	40	-	40		1200 (2)	

- (1) The temperature of the cartridge must be ≤ 40°C
- (2) The cartridge must be stored at ambient temperature (20°C)
- (3) Maximum working length: 600 mm
- (4) Diamond coring without roughening is allowed only for EPOBAR adhesive

Table B4: Parameters for use of roughening tool (only for EPOBAR*)

Rebar diameter d _{nom} [mm]	Nominal diamond core diameter d ₀ [mm]	Roughtening tool 1) d ₀ [mm]
φ12	16	16
φ14	18	18
φ16	20	20
φ20	25	25
φ25	30	30
φ28	35	35
φ32	40	40

¹⁾ For checking the wearing of roughening drill bit, a wear gauge is delivered with each roughtening tool

Table B5: Dimensions of the cleaning tools for reinforcing bars (rebars)

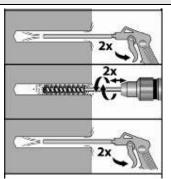
		Nominal diameter of the reinforcing bars (rebars)							
Rebar diameter dnom [mm]	ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф32
Ø Steel brush [mm] 1)	11	13	16	20	22	26	32	37	42
Ø Plastic extension for compress air cleaning	6	9	9	13	13	13	13/20	13/20	13/20

¹⁾ The diameter of the round steel brush shall be checked before use. The minimum brush diameter has to be at least equal to the borehole diameter d₀. The round steel brush shall produce natural resistance as it enters the drill hole. If this is not the case, use a new brush or a brush with a larger diameter.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Intended used	Annex B4
Maximum embedment depth I _{vmax}	
Installation parameters	

Table B6: Gel time and curing time for EPOBAR and EPOBAR ⁺

Ambient temperature (°C)	Processing time (min)	Curing time in dry concrete (min)	Curing time in wet concrete (min)
5° to 9°C	22	250	500
10° to 19° C	11	190	380
20° to 29°C	6	110	220
30° to 39°C	3	65	130
40° C	3	50	100

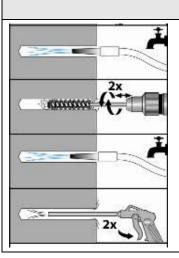

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Intended used Setting data : gel time and curing time	Annex B5

Drilling of the hole:

	Rotary hammer drilling or compressed air drilling
	Electrical hammer drilling with XTD hollow drill bit used in relation with the SPIT AC 1625 vacuum or the type. This drilling technique allows for cleaning the hole from the dust debris while operating drilling. No further cleaning is then required before injecting the adhesive.
4	Diamond coring The roughening tool must be used for a coring diameter higher than 16 mm.(only for EPOBAR+, rebar diameter > \phi12)

Cleaning the borehole:

Hammer drilling technique (with standard drill bit for concrete)



- 1. Insert air nozzle fitted with the relevant plastic extension to bottom of the hole and blow out at least 2 times using oil free compressed air (6 bars min.) and until no more dust is evacuated.
- 2. Using the relevant brush and SPIT extension fitted on a drilling machine, starting from the top of the hole, move downward to the bottom of the hole (duration 5s) then move upward to the top of the hole (duration 5s). Repeat this operation.
- 3. Insert air nozzle fitted with the relevant plastic extension to bottom of the hole and blow out at least 2 times using oil free compressed air (6 bars min.) and until no more dust is evacuated.

Hammer drilling technique with hollow drill bit XTD

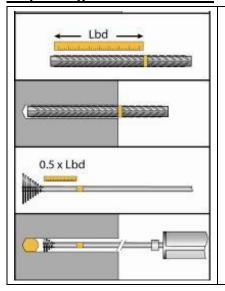
Electrical hammer drilling with XTD hollow drill bit used in relation with the SPIT AC 1625 vacuum or the type. This drilling technique allows for cleaning the hole from the dust debris while operating drilling. No further cleaning is then required before injecting the adhesive.

Diamond core drilling technique

- 1. Clean the hole with tap water
- 2. Using the relevant brush and extension fitted on a drilling machine, starting from the top of the hole, move downward to the bottom of the hole (duration 5s) then move upward to the top of the hole (duration 5s). Repeat this operation.
- 3. Clean the hole with tap water
- 4. Insert air nozzle fitted with the relevant plastic extension to bottom of the hole and blow out at least 2 times using oil free compressed air (min. 6 bars) and until no more dust is evacuated.

SPIT EPOBAR / EPOBAR⁺ for rebar connection

Installation instruction


Annex B6

Safety precaution

The safety data sheet must be read before using the product and the safety instructions followed.

- Storage temperature of the cartridge +0°C to +35 °C
- Cartridge temperature at the time of installation must be ≥ +5°C
- Base material temperature at the time of installation must be between -5°C and +40°C
- Check the date of expiry of the cartridge

Dispensing into the borehole:

- 1. Put the anchorage depth mark on the rebar.
- 2. Check the anchorage depth.
- Cut the piston plug at the relevant diameter. The volume of adhesive that is needed to be injected in the borehole must be reported on the mixing nozzle or its extension. The marking must be set to 0,5 times the anchorage depth.
- 4. When using a new cartitridge an initial amount of adhesive corresponding to the first the first trigs has to be discarded until an even color is achieved.
- 5. Insert the nozzle to the far end of the hole, and inject the adhesive, withdrawing the nozzle as the hole fills in order to avoid trapping air bubbles. Fill the hole until the mark appear.

Inserting the rebar:

- 6. Immediately after having injected the adhesive, insert the rebar, slowly and with a slight twisting motion. Remove excess adhesive from around the mouth of the hole before it sets. Control the embedment depth.
- 7. Leave the rebar undisturbed until the cure time has elapse.

SPIT EPOBAR / EPOBAR⁺ for rebar connection

Installation instruction

Annex B7

Essential characteristics under static and quasi-static loading: EPOBAR

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 years for **Hammer drilling and Compressed air drilling**.

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor α_{lb} given in Table C1.

The design bond strengths $f_{bd,PIR}$ are given in Table C3. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor $k_b = k_{b,100y}$ according to Table C2.

Table C1: Amplification factor factor α_{lb} and $\alpha_{lb,100v}$

				Amplific	ation fact	tor α _{lb} [-]			
Rebar diameter	Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ8 to φ32		1,0							

Table C2: Bond efficiency factor k_b

	Bond efficiency factor k _b [-]										
Rebar diameter	Concrete strength class										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ8 to φ32	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		

Table C3: Design values of the bond strength fbd.PIR¹⁾

		Bond strength f _{bd,PIR} [N/mm ²]									
F	Rebar diameter	Concrete strength class									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
	φ8 to φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Performance Essential characteristics under static and quasi-static loading	Annex C1

Essential characteristics under static and quasi-static loading: EPOBAR+

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 and 100 years for **Hammer drilling and Compressed air drilling**.

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ given in Table C4.

The design bond strengths $f_{bd,PIR}$ and $f_{bd,PIR,100y}$ are given in Table C6. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor $k_b = k_{b,100y}$ according to Table C5.

Table C4: Amplification factor α_{lb} and $\alpha_{lb,100y}$

		Amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ [-]								
Bar diameter		Concrete strength class								
	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60								
ф8		1,0								
ф10		1,0								
φ12		1,0								
φ14				1,0				1	,1	
ф16				1,0				1,1		
ф20				1,0			1,1	1,2	1,2	
ф25		1,0 1,1 1,2 1,3 1,3							1,3	
ф28		1,0 1,1 1,2 1,3 1,						1,4		
ф32		1	,0		1,	2	1,3	1,4	1,5	

Table C5: Bond efficiency factor k_b and k_{b,100y}

	Bond efficiency factor k _b = k _{b,100y} [-]										
Bar diameter		Concrete strength class									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ8 to φ32	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		

Table C6: Design values of the bond strength f_{bd,PIR}¹⁾ and f_{bd,PIR,100v}¹⁾

		Bond resistance f _{bd,PIR} = f _{bd,PIR,100y} [N/mm ²]									
Bar diameter		Concrete strength class							-		
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ8 to φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Performance Essential characteristics under static and quasi-static loading	Annex C2

Essential characteristics under static and quasi-static loading: EPOBAR

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 years for **Diamond coring**.

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor α_{lb} given in Table C7.

The design bond strength f_{bd,PIR} is given in Table C9. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor k_b according to Table C8.

Table C7: Amplification factor α_{lb}

		Amplification factor α_{lb} [-]							
Bar diameter		Concrete strength class							
	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60							
φ8 to φ32		1,0							

Table C8: Bond efficiency factor k_b

		Bond efficiency factor k _b [-]									
Bar diameter		Concrete strength class									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ8 to φ32	1,0	1,0	1,0	0,85	0,75	0,65	0,6	0,6	0,5		

Table C9: Design values of the bond strength f_{bd,PIR}1)

		Bond resistance f _{bd,PIR} [N/mm²]								
Bar diameter		Concrete strength class							-	
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
φ8 to φ32	1,6	2,0	2,3	2,3	2,3	2,3	2,3	2,3	2,3	

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Performance Essential characteristics under static and quasi-static loading	Annex C3

Essential characteristics under static and quasi-static loading: EPOBAR+

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 years for **diamond coring with roughening tool.**

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor α_{lb} given in Table C10.

The design bond strength f_{bd,PIR} is given in Table C12. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor k_b according to Table C11.

Table C10: Amplification factor α_{lb}

		Amplification factor α _{lb} [-]							
Bar diameter		Concrete strength class							
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12									
φ14								1,1	1,2
φ16								1,1	
φ20				1,0					1,1
φ25									1,1
φ28								1,0	1,0
φ32									1,0

Table C11: Bond efficiency factor k_b

		Bond efficiency factor k _b [-]								
Bar diameter		Concrete strength class								
	C12/15	12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60								
φ12 to φ20		1,0								
ф25				1	,0				0,9	
ф28		1,0 0,9 0,9							0,9	
ф32		1,0 0,9 0,8 0,9							0,9	

Table C12: Design values of the bond strength f_{bd,PIR}¹⁾

		Bond resistance f _{bd,PIR} [N/mm²]								
Bar diameter		Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
φ12-φ20								4.0	4,3	
φ25	1.6	2.0	2,3	2.7	3.0	2.4	3,7	4,0	4,0	
ф28	1,6	2,0	2,3	2,7	3,0	3,4		3,7	4,0	
ф32							3,4	3,4	3,7	

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Performance Essential characteristics under static and quasi-static loading	Annex C4

Essential characteristics under static and quasi-static loading: EPOBAR

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 years for **Hammer drilling with XTD hollow drill bit**.

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor α_{lb} given in Table C13.

The design bond strength $f_{bd,PIR}$ is given in Table C15. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor k_b according to Table C14.

Table C13: Amplification factor α_{lb}

	Amplification factor α _{lb} [-]									
Bar diameter	r diameter Concrete strength class									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
φ12 to φ25					1,5					

Table C14: Bond efficiency factor k_b

				Bond effi	ciency fa	ctor k _b [-]		
Bar diameter	Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12 to φ25		1,0							0,9

Table C15: Design values of the bond resistance fbd,PIR¹⁾

	Bond resistance f _{bd,PIR} [N/mm²]										
Bar diameter		Concrete strength class									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ12 to φ25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,0		

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR ⁺ for rebar connection	
Performance Essential characteristics under static and quasi-static loading	Annex C5

Essential characteristics under static and quasi-static loading: EPOBAR+

Minimum anchorage length, minimum lap length and design values for bond strength for a working life of 50 years for **Hammer drilling with XTD hollow drill bit**.

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the amplification factor α_{lb} given in Table C16.

The design bond strength $f_{bd,PIR}$ is given in Table C18. It is obtained by multiplying the design bond strength f_{bd} according to EN 1992-1-1 (Eq. 8.3) by the bond efficiency factor k_b according to Table C17.

Table C16: Amplification factor α_{lb}

				Amplific	ation fac	tor α_{lb} [-]			
Bar diameter	Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12 to φ25					1,5				

Table C17: Bond efficiency factor k_b

				Bond effi	ciency fa	ctor k _b [-]				
Bar diameter		Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
φ12 to φ25					1,0					

Table C18: Design values of the bond resistance f_{bd,PIR}¹⁾

Bar diameter			В	ond resis	tance f _{bd,}	_{PIR} [N/mm	n²]		
	Concrete strength class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12 to φ25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

SPIT EPOBAR / EPOBAR⁺ for rebar connection Performance Essential characteristics under static and quasi-static loading Annex C6